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SUMMARY

For optimal control problems related to �uid �ow the choice of an adequate cost functional for suppres-
sion of vortices is of signi�cant importance. In this research we propose a cost functional based on a
local dynamical systems characterization of vortices. The resulting functional is a non-convex function
of the velocity gradient tensor. The resulting optimality system describing �rst order necessary optimal-
ity conditions is derived, a possible strategy for numerical realization of the optimal control problem is
provided and a numerical feasibility study is conducted. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The objective of this work is the introduction of a novel optimal control formulation for the
reduction and possibly extinction of vortices in an incompressible �uid and the description of
a feasibility study of the proposed methodology. Optimal control is based on the minimization
of a cost functional

J (y; u)= J1(y) + �J2(u) (1)

over a set U of admissible controls u. Here y=y(t; x) denotes the velocity vector of the �uid
at time t¿0 and location x in the spatial domain �. Further, �¿0 stands for the control
costs. The controls u can be body forces or action like blowing or suction along the boundary
of �. Alternatively, the control action on the �uid can be enforced in a more indirect manner
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like heating or cooling. In many cases a proper choice for J2 is given by

J2(u)=
1
2

∫ T

0

∫
�c

|u(t; x)|2 dx dt (2)

where T is the control horizon and �c ⊂ �� the support of the controller. It expresses the fact
that applying control requires resources and in mathematical terms—after possible modi�ca-
tions in case of boundary control—it typically guarantees the existence of a minimizer of J
in (1) over u∈U .
The choice of J1 is signi�cantly more involved. It must be governed by the physical goal

of describing vortices and by numerical feasibility considerations. The following choices can
be found in the literature and have been proven to be successful in the sense of reduction or
elimination of spiraling streamlines in speci�c numerical experiments:

J1(y) =
1
2

∫ T

0

∫
�

|curly|2 dx dt (3)

J1(y) =
1
2

∫ T

0

∫
�

|y − yStokes|2 dx dt (4)

J1(y) =
1
2

∫ T

0

∫
�

|g(y)|2 dx dt (5)

where g is a problem-dependent function of the state y. In case of channel �ow, with the
longitudinal extension along the x1-axis, for example, one would choose g(y)= min(0; y1)
[1]. The functional in (4) is of tracking type, with yStokes the solution of the Stokes equation
and otherwise the same problem data (without control) as that for obtaining y. Minimizing
the square of the vorticity as in (3) was considered in References [2–4], for example. As
with (4) and (5) formulation (3) is a practical choice, but it has short-comings. These include
that |curly| does not identify vortex cores in shear �ow, especially if the background shear is
comparable to the vorticity within vortex [5]. From the numerical control point of view the
main di�culty involved in realizing the minimization of J with J1 as in (3) is given by the
fact that the adjoint equation, which characterizes the gradient of J with respect to u, involves
inhomogeneous terms of the form (curl?) curl, with curl? the adjoint operation of curl. As a
consequence the solutions to the adjoint equation can be fairly rough and good adjoint solvers
are essential. Turning to (4) and (5) next, both these functionals do not attempt to quantify
vorticity of the �uid in terms of intrinsic properties of the velocity �eld y or pressure p.
Thus, while vortices may be reduced by minimizing J with (4) and (5) this can be at the
cost of suppressing features of the non-linear �ow which ought to sustain. Let us, however,
emphasize one highly desirable property of cost (4) from the numerical optimization point of
view. The second derivative of the cost at a control u in directions (�u; �u) is given by

J ′′(u)(�u; �u) =
∫ T

0

∫
�
(|y′(u)�u|2 + (y(u)− yStokes)y′′(u)(�u; �u)) dx dt

+�
∫ T

0

∫
�c

|�u|2 dx dt (6)
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where y′ and y′′ denote the �rst and second derivatives, respectively. Numerical methods are
strongly in�uenced by positive de�niteness of the Hessian which, by (6) is likely to hold for
small residue problems where |y(u)−yStokes| is small. Further tracking-type formulations with
the aim of stabilization and drag reduction were investigated in e.g. References [6–9]. We
also refer to References [10, 11] for proceedings publications which cover many important
aspects in the area of �ow control.
In this work we shall attempt to obtain a proper de�nition for J1, serving the purpose

of penalizing ‘vorticity’, by connecting it to the long-lasting question of what constitutes a
vortex. In Reference [5] a list of intuitively suggestive, yet inadequate choices is provided.
These include vorticity magnitude measured by |curly| for reasons already discussed above,
path—and streamlines since they are not Galilean invariant and moreover di�cult to quantify
within an optimal control formulation, and �nally local pressure minima, since there can be
pressure minima without vortex cores.
A promising approach for the description of vortices or eddies consists of a local analysis

based on dynamical systems characterized by the �ow y(x). Subsequent linearization of the
�ow around stationary points allows to use the qualitative theory of linear dynamical systems.
In the case of two-dimensional �ows phase plane analysis is readily available from text
book literature, see e.g. Reference [12], for the three-dimensional case we refer to References
[13–15], for example. Given the velocity �eld y=y(t; x), the location x of a particle, which
is at x0 at t= t0, is given as the solution to the dynamical system

d
dt
x(t) = y(t; x(t)); t¿t0

x(t0) = x0

(7)

Let �x denote a critical point of (7) in the sense that y(t; �x)=0 for all t¿t0. Expanding the
right-hand side of (7) in terms of x up to order one and taking t0 as a reference time we
have

d
dt
(x(t)− �x) =∇y(t0; �x)(x(t)− �x)

x(t0) = x0

(8)

The qualitative behaviour of (8) is fully described by the spectral properties of the velocity
gradient tensor ∇y(t0; �x). To simplify notation we set A=∇y(t0; x) and introduce its symmetric
and antisymmetric parts S= 1

2(A+ A
T) and T = 1

2(A − AT), referred to as strain and rotation
tensor, respectively. In case of three-dimensional �ow the characteristic equation of A is
given by

�3 − (tr A)�2 + 1
2((tr A)

2 − tr A2)�− det A=0
where tr A stands for the trace of A. Since tr A=0 for incompressible �uids the characteristic
equation reduces to

�3 − 1
2 tr A

2�− det A=0
Let Q= − 1

2 tr A
2 and de�ne the discriminant

D=(12 det A)
2 + (13 Q)

3
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If D¿0 then A has one real and two complex-conjugate eigenvalues. Based on these quantities
three types of de�nitions for the existence of vortices are found in the literature. In References
[13, 14] vortex cores are related to regions with complex eigenvalues of ∇y. In terms of
linear dynamical systems complex eigenvalues correspond to centres and foci, see Reference
[12], and in view of (7), (8) this suggests that the local streamline pattern is closed or
forms spirals in a reference frame moving with the particle. In Reference [16] an eddy is
de�ned as a region where Q is positive with pressure which is below the ambient value. The
third de�nition is based on the strain and rotational tensors and de�nes a vortex core as a
connected region within which the symmetric matrix S2 + T 2 has two negative eigenvalues,
[5]. Respective merits and di�erences among the three de�nitions are analysed in Reference
[5]. All three are Galilean invariant and each one of them, with di�erent degree of complexity,
can be used as the basis for de�ning the J1-part of the cost functional for an optimal control
problem.
We turn to the two-dimensional case. In this case the velocity gradient is of the form

∇y=
(
a b

c −a

)
(9)

and the eigenvalues of ∇y are complex if and only if det∇y¿0. It is simple to argue that
the second and third de�nitions above as well predict a vortex in regions where

det∇y¿0
For two-dimensional �ows this considerations suggests, to choose

J1(y)= �
∫ T

0

∫
�0
h(det∇y(t; x)) dx dt (10)

where �o is the region within which it is desired to suppress vortices, and h is positive
whenever its argument is positive. To motivate a speci�c choice for h we return to the local
linear system analysis. Expanding (7) at (t0; �x) we have

d
dt
(x(t)− �x) = y(t0; �x) + A(x(t)− �x); t¿t0

x(t0) = x0

(11)

where A := ∇y(t0; �x) is of form (9). Hence assuming that det A �=0 there exists a regular
matrix B such that

C := B−1AB=

(
0 !1

−!2 0

)

with !i¿0. Introducing the new variable z(t)=B−1(x(t)− �x) and setting f=B−1y(t0; �x), we
have

d
dt
z(t) =Cz(t) + f; t¿t0

z(t0) = B−1(x0 − �x)
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The solution to this system is given by z(t)= eC(t−t0)(z(t0) + C−1f) − C−1f, and hence the
solution to (11) is given by

x(t)=BeC(t−t0)(z(t0) + C−1f) + �x − BC−1f (12)

Since

eCt =


 cos

(√
!1!2t

)
sin
(√
!1!2t

)
−
√

!2
!1
sin
(√
!1!2t

) √
!2
!1
cos
(√
!1!2t

)



the trajectories described by (12) are closed curves (centres). The lengths of their periods
decreases as det A=!1!2 increases. This suggests to choose h as a monotonically increasing
function of time. To allow di�erentiability of the cost, h is chosen as C1-function. This results
in a possible choice for h given by

h(s)=




0 if s¡− �
s2

2�
+ s+

�
2

if − �6s60

s+
�
2

if 06s

(13)

for �xed, small �¿0.
Let us brie�y describe the remainder of the paper. In Section 2, we describe the two-

dimensional model problem that we shall use to validate the proposed approach for opti-
mization-based vortex reduction. Further the adjoint-based gradient representation is given.
Relevant aspects for numerical optimization are summarized in Section 3. The fourth section
contains numerical results and comparisons.

2. ADJOINT-BASED OPTIMAL CONTROL

Let � be a bounded spatial two-dimensional domain with boundary �. By y=(y1; y2) we
denote the velocity of the �uid in the directions x=(x1; x2) and p denotes its pressure. The
controlled time-dependent Navier–Stokes equations on the time–space cylinder Q=(0; T )×�;
T¿0, are given by

yt − 1
Re
	y + (y · ∇)y +∇p=Bu in Q (14a)

−div y=0 in Q (14b)

where u∈U is the control variable, U is the space of controls, and B : U →L2(Q) is a
bounded linear operator. Further 	 denotes the component-wise Laplacian

∑2
j=1 @

2yi=@x2j ,

(y · ∇)y stands for the vector with components ∑2
j=1 yj@yi=@xj and Re¿0 is the Reynolds

number. The function Bu∈L2(Q) represents a volume force. In our numerical examples the
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control acts on a subset �c of �. In this case B is the extension-by-zero operator, i.e. Bu= u
in �c and Bu=0 in �\�c. At t=0 the initial condition

y(0; x)=y◦(x) for all x∈� (14c)

is imposed, where y◦ is a given function on �. On the lateral boundary 
= (0; T ) × � we
prescribe inhomogeneous Dirichlet conditions

y= g on 
 (14d)

where g is a �xed function satisfying ∫ T

0

∫
�
g · n ds dt=0

where n is the outward normal on �. Next we introduce the cost functional, which is motivated
by the discussion of Section 1. For positive scalars � and � we de�ne

J (y; u)= �
∫ T

0

∫
�o
h(det∇y) dx dt + �

2
‖u‖2U

with �o ⊆ � and h as in (13). Let �o denote the boundary of �o and set
�̃o =�o\�

The optimal control problem that we consider has the form

min J (y; u) such that (y;p; u) solves (14) (P)

Let (y∗; p∗; u∗) denote a local solution to (P). Such a solution must satisfy the �rst order
optimality conditions, referred to as the optimality system. To formally derive this system we
introduce

L(y;p; u; �; �) = J (y; u) +
∫ T

0

∫
�

(
yt − 1

Re
	y + (y · ∇)y +∇p− Bu

)
� dx dt

+
∫ T

0

∫
�
� div y dx dt

Taking derivatives with respect to y;p; u; �; � we obtain the optimality system in the pri-
mal variables (y;p; u) and the adjoint variables (�; �), where for convenience we drop the
superscripts ∗:

yt − 1
Re
	y + (y · ∇)y +∇p=Bu in Q (15a)

−div y=0 in Q (15b)

y= g on 
 (15c)

y(0; ·) = y◦ on � (15d)
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−�t − 1
Re
	�+ (∇y)T�− (y · ∇)�+∇�= R(y) in Q (15e)

−div �=0 in Q (15f)

�=0 on 
 (15g)

�(T; ·) = 0 in � (15h)

�u− B?�=0 in U (15i)

Here, B? : L2(Q) → U denotes the adjoint of the operator B, ((∇y)T�)i=
∑2

j=1(@yj=@xi)�j,
and the right-hand side in (15e) is given by

R(y)= − �

−curl(h(det∇y)∇y2) + �[0;T ]×�̃◦h

′(det∇y)( @y2@x2 − @y2
@x1
)

curl(h(det∇y)∇y1)− �[0;T ]×�̃◦h
′(det∇y)( @y2@x2 − @y2

@x1
)




where �[0;T ]×�̃◦ denotes the characteristic function of the set [0; T ]× �̃◦.
Introducing the reduced cost functional Ĵ : U → R by

Ĵ (u)= J (y(u); u)

where y(u) solves (14) for the control u∈U , we obtain from (15) that the gradient of the
reduced cost functional at u in direction �u∈U is given by

〈Ĵ ′(u); �u〉U = 〈�u− B?�; �u〉U = 〈�u; �u〉U −
∫ T

0

∫
�
�B�u dx dt

where � is computed from (15).

3. ASPECTS OF NUMERICAL OPTIMAL CONTROL

Our numerical approach is based on the reduced problem

minimize Ĵ (u) := J (y(u); u) over u∈U (16)

where y corresponds to the solution of (14). Problem (16) is solved by a Polak–Ribiere
type conjugate gradient algorithm (CG-algorithm) combined with the strong Wolfe–Powell
line search procedure for computing appropriate step-sizes along the CG search direction in
every iteration; see References [17, 18]. The Polak–Ribiere method has the advantage that it
performs a soft reset whenever the CG search direction yields no signi�cant progress. This
can be seen from the fact that given dk , the CG search direction of the previous iteration, the
next search direction is computed by means of

dk+1 = − ∇Ĵ (uk+1) + �̃kdk (17)
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with

�̃k =
〈∇Ĵ (uk+1);∇Ĵ (uk+1)− ∇Ĵ (uk)〉U

‖∇Ĵ (uk)‖2U
If it happens that uk and uk+1 are very close, then �̃k ≈ 0 and, hence, the steepest descent
part in the equation for dk+1 dominates. In addition, motivated by References [19, 20] we use

�k = max{�̃k ; 0}
i.e. whenever �̃k is negative we perform a reset by using the steepest descent direction. We
further perform a reset if dk+1 is not a descent direction, i.e. when 〈∇Ĵ (uk+1); dk+1〉U¿0.
This is necessitated by the line search rule.
Due to the fact that the gradient computation depends on the quality of the solution of

the adjoint system, the implementation of the line search has to be done carefully. In fact,
we implemented the following version of the strong Wolfe–Powell rule by utilizing error
tolerances �k1; �

k
2¿0:

Ĵ (uk + 	kdk)6 Ĵ (uk) + 
	k〈∇Ĵ (uk); dk〉U + �k1
|〈∇Ĵ (uk + 	kdk); dk〉U | 6 −�〈∇Ĵ (uk); dk〉U + �k2

with �k1; �
k
2 given by

�k1 = �M (1 + |Ĵ (uk + 	kdk)|+ |Ĵ (uk)|+ |〈∇Ĵ (uk); dk〉U |)

�k2 = �M (|〈∇Ĵ (uk); dk〉U |+ |〈∇Ĵ (uk + 	kdk); dk〉U |)

Here �M¿0 denotes a small tolerance of the order of the round-o� error. Typical values for

; � are 
=10−4; �=10−1.
Let us turn towards the termination criteria used to stop the CG-algorithm. Based on the

error analysis and the arguments given in Reference [21] we used the conditions

|Ĵ (uk)− Ĵ (uk−1)|6 �Ĵ (1 + |Ĵ (uk)|) (18)

‖uk − uk−1‖U 6√
�Ĵ (1 + ‖uk‖U ) (19)

‖∇Ĵ (uk)‖U 6 3
√
�Ĵ (1 + |Ĵ (uk)|) (20)

for termination. Motivated by the accuracy of the adjoint solver we choose �Ĵ =10
−6 or 10−7.

In many test runs the criterion (20) was satis�ed last.

4. NUMERICAL RESULTS

Here we present a numerical example by which the applicability of the proposed method is
tested. As a test example we chose the �ow in a 2D lid-driven cavity [22, 23]. This �ow
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Figure 1. Lid-driven cavity �ow at Re=400: (a) stream function and velocity vectors; and (b) levels of
det∇y. Note that in the oval regions near the bottom corners det∇y¿0.

has unambiguous and easy to pose boundary conditions and possesses important features of a
real �ow: boundary layers, core vortex and secondary vortices. These features are illustrated
in Figure 1(a) by a stream function (�) and velocity vectors plot for Re=400. Most of
the cavity is occupied by the primary vortex (PV) which is driven by the moving lid. The
PV induces the bottom-left (BL) and bottom-right (BR) vortices. These vortices are also
illustrated in Figure 1(b) by a contour plot of det∇y.
Our control objective is to reduce the BR vortex. For this purpose we consider the con-

trol and observation domains �o =�c = (0:75; 1)× (0; 0:25), which are a subset of the region
�=(0; 1)× (0; 1) occupied by the �ow. Let �; �o and �c denote the respective boundaries.
The optimization horizon is given by T =1.

4.1. Discretization

The controlled Navier–Stokes (14a) and continuity (14b) equations are discretized in space by
means of a staggered-grid control-volume approach [24]. A �fth-order upwind �nite di�erence
scheme is applied to the convection terms whereas a fourth-order centred scheme is used
for the di�usion terms. Continuity is enforced through a SIMPLE-like scheme [24] where a
discrete Poisson equation is iteratively solved by means of the conjugate gradient method [25].
An explicit �rst-order Euler scheme is used to integrate the discrete momentum conservation
equations in time. The adjoint equations (15e) and (15f) are solved using the same approach,
accounting for the fact that the time integration is backwards in time. The time step is chosen
small enough to guarantee both time accuracy and convergence of the solutions of the primal
and adjoint systems.
The solution of the primal system is validated in Figure 2 by comparing our results with

results of Reference [22]. It can be seen that an excellent agreement between the present and
benchmark pro�les holds. A standard check of the solution of the optimality system (15) is
to track the �ow to the Stokes �ow. In this case J1(y) has the form given by (4). The results
for Re=400; �=10−2, grid resolution 81× 81 and time step �t=7:5× 10−3 are presented in
Figure 3. Figure 3(a) shows that J; J1; J2 are converged within 15 iterations, while ‖∇J‖ is
further reduced about two orders of magnitude before the convergence criteria is satis�ed.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:345–359
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Figure 2. Lid-driven cavity �ow at Re=1000. Comparison of our velocity pro�les (obtained
on a 161× 161 grid) U |X=0:5 and V |Y=0:5 (lines) with correspondent benchmark velocity

pro�les ( and ◦) from Reference [22].

Inspection of the adjoint and control �elds revealed that the changes in u are small after
the 15th iteration, while � continues to change up to the 50th iteration. Note that the value
of ‖∇J‖ is approximately four orders of magnitude smaller than J2. This explains the small
changes of J1 and J2 corresponding to big changes in ‖∇J‖ after the 15th iteration. Comparing
Figure 3(c) and 3(d) one can see that the control force (Figure 3(b)) successfully tracks the
�ow to the Stokes �ow.

4.2. Reduction of the BR vortex

Before presenting the numerical results, we give the values of some parameters used in the
numerical solution of the optimality system. The stopping tolerance �Ĵ is chosen in such a
way that further iterations do not lead to signi�cant changes in u and y. The typical value is
�Ĵ =10

−7.
The regularization parameter � takes a value �=10−4 which approximately corresponds to

the accuracy of the discretization for the grids used. Values 06�610−3 are also tested but
no signi�cant di�erences in the results are found.
A typical value for the cost is �=10−2. For a cheaper control (� smaller) the BR vortex of

the controlled �ow is generally weaker. However no signi�cant di�erences between the results
were found for �610−2. The weight � of J1 is taken to be �=1 if not stated otherwise.
The success of the minimization procedure depends on the gradient algorithm used to solve

the optimality system (15). For example, by using the steepest descent method for Re=400
combined with the Armijo’s line search we obtained 
 ≈ 8, where


=
max�o �uncontrolled
max�o �controlled
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Figure 3. Tracking to Stokes �ow for Re=400 on a 81× 81 grid: (a) convergence with the number
of CG iterations: — J , – – J1, ·– J2; · · · ‖∇J‖; (b) control force at t=0:15; (c) target �ow (Stokes

�ow); and (d) controlled �ow at t=0:8.

at t=0:8. For the Polak–Ribiere CG method combined either with the Wolfe–Powell or
with the Armijo’s line search 
 ≈ 20. Results with Wolfe–Powell line search are shown in
Figure 4. Figure 4(a) presents the velocity vectors and stream function of the uncontrolled
�ow. An analogous plot of the controlled �ow is presented in Figure 4(b). It can be seen that
the control force shown in Figure 4c counteracts the BR vortex. Although the BR vortex is
not completely suppressed its reduction is evident.
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Figure 4. Results for Re=400 and �=1: (a) uncontrolled �ow: levels of � [5× 10−6; 10−4; 5× 10−4]
and velocity vectors; (b) controlled �ow: a level of � [5× 10−6] and velocity vectors at t=0:8 (note
that the higher levels of � are not present in �o because of the reduction of �); (c) control force at

t=0:8; and (d) convergence with the number of CG iterations: — J , – – J1; ·– J2; · · · ‖∇J‖.

If the weight � of J1 is increased by choosing �=10 then 
 ≈ 102. Results for �=100
are shown in Figure 5. It can be seen that the BR vortex is completely suppressed. It is
interesting to note that if the tracking type functional J1(y)= 1

2

∫ T
0

∫
� |y−yStokes|2 dx dt is used

to suppress the BR vortex the control cost (J2) is an order of magnitude larger.
We further checked the performance of the method for a higher value of the Reynolds

number, namely Re=1000. The results are depicted in Figure 6. Figure 6(b) shows that the
BR vortex is suppressed in the observation region. The level of � in the upper right corner
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Figure 5. Results for Re=400 and �=100: (a) controlled �ow: levels of � [5× 10−6; 10−4; 5× 10−4]
and velocity vectors at t=0:8 (note that the levels of � are not present in �o because of the re-
duction of the �); (b) control force at t=0:8; and (c) convergence with the number of CG itera-
tions: — J , – – J1; ·– J2; · · · ‖∇J‖. (Note that the values of J and J1 are very close so that they are

visually indistinguishable on this plot.)

of Figure 6(b) is outside of �o. The control force is depicted in Figure 6(c) and Figure 6(d)
shows that the solution of the optimality system (15) is converged.

5. SUMMARY AND CONCLUSIONS

A cost functional based on phase plane analysis involving the velocity gradient tensor of
the �uid is proposed for the reductions of vortices in optimal control-based formulations of
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Figure 6. Results for Re=1000 and �=1: (a) uncontrolled �ow: levels of
� [5× 10−5; 5× 10−4; 1:5× 10−3] and velocity vectors; (b) controlled �ow: a level of
� [5× 10−5] and velocity vectors at t=0:8 (note that the levels of � are not present
in �o because of the reduction of �); (c) control force at t=0:8; and (d) convergence

with the number of CG iterations: — J , – – J1; ·– J2; · · · ‖∇J‖.

vortex reduction strategies. The optimality system and the gradient of the cost with respect
to the control are characterized and a possible numerical realization is proposed. It e�ciency
is demonstrated by two-dimensional numerical examples. The results that were obtained on
the basis of new cost functional encourage further analysis of the proposed techniques to
boundary control, di�erent geometries and three-dimensional problems.
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